A Case Study of Porting HPGMG from CUDA to OpenMP Target Offload

Christopher Daley, Hadia Ahmed, Sam Williams, Nicholas Wright (LBNL/NERSC), IWOMP 2020 – September 22
Overview

- This presentation will describe how we ported HPGMG to OpenMP target offload and show performance results for several compilers.
- HPGMG is a Finite Volume Geometric Multigrid benchmark.
- We will consider two versions of HPGMG:
 1. A base version of HPGMG ported from a CUDA Managed Memory version of HPGMG.
 2. A new version of HPGMG using explicit data movement instead of Managed Memory.
Multigrid methods and HPGMG overview

Multigrid methods use a hierarchy of levels to solve elliptic PDEs:

- Levels consist of 2^3, 4^3, 8^3, … grid points (full Multigrid configuration)
- HPGMG divides the level data into blocks and distributes the blocks across MPI ranks
- HPGMG allocates large data buffers per level: block pointers are used to read/write at various offsets in these large data buffers
Code version #1: A Managed Memory implementation of HPGMG

- HPGMG-CUDA is an NVIDIA fork of HPGMG (https://bitbucket.org/nsakharnykh/hpgmg-cuda)
 - Level data allocated in Managed Memory (cudaMallocManaged)
 - Level data structure shallow copied in each CUDA kernel
- We ported HPGMG-CUDA to OpenMP target offload using the following approach
 - Copy the body of the CUDA kernels into new functions
 - Replace CUDA thread indexing (blockIdx, threadIdx) with work-shared OpenMP target offload loops
 - Map Level data structure in every single OpenMP target region (data is still allocated using cudaMallocManaged)
Platforms used

<table>
<thead>
<tr>
<th></th>
<th>Cori-GPU</th>
<th>Summit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Node architecture</td>
<td>Cray CS-Storm 500NX</td>
<td>IBM AC922</td>
</tr>
<tr>
<td>Node CPUs</td>
<td>2 x Intel Skylake</td>
<td>2 x IBM Power 9</td>
</tr>
<tr>
<td>Available cores per CPU</td>
<td>20 @ 2.40 GHz</td>
<td>21 @ 3.07 GHz</td>
</tr>
<tr>
<td>Node GPUs</td>
<td>8 x 16 GB NVIDIA V100</td>
<td>6 x 16 GB NVIDIA V100</td>
</tr>
<tr>
<td>CPU-GPU interconnect</td>
<td>PCIe 3.0 switch</td>
<td>NVLink 2.0</td>
</tr>
<tr>
<td>Compiler</td>
<td>GPU offload</td>
<td>Cori-GPU version</td>
</tr>
<tr>
<td>-------------------</td>
<td>-------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>GCC + NVCC</td>
<td>CUDA</td>
<td>7.3.0 + 10.1.243</td>
</tr>
<tr>
<td>NVIDIA/PGI</td>
<td>OpenACC</td>
<td>20.4</td>
</tr>
<tr>
<td>Cray CCE</td>
<td>OpenMP</td>
<td>9.1.0 (LLVM version)</td>
</tr>
<tr>
<td>IBM XL</td>
<td>OpenMP</td>
<td>-</td>
</tr>
<tr>
<td>LLVM/Clang</td>
<td>OpenMP</td>
<td>11.0.0-git (#17d8334)</td>
</tr>
</tbody>
</table>
We used the Top-500 HPGMG configuration: 4th order accurate, GSRB smoother, and BiCGStab bottom solver.

- Grid spacing = 1/512: creates 9 levels from 2^3 to 512^3 grid points
 - Maximum block size = 32^3
 - Thousands of blocks on the finest level
- Memory footprint ~38 GiB
- CPU-only configuration run on 1 CPU socket: 1 MPI rank per core
- GPU configuration run on 1 CPU socket and 3 GPUs: 1 MPI rank per GPU
Managed Memory performance on Summit: 1 Power 9 CPU and 3 Volta GPUs

- NVCC CUDA: 16x faster than the MPI-only configuration on a single CPU (21c)

- GPU offload using directives can be competitive with CUDA:
 - PGI OpenACC: 0.89x
 - XL OpenMP: 0.70x

- Clang performed poorly because of OpenMP runtime overheads (~80% of total runtime spent in cuMemAlloc and cuMemFree)
NVCC CUDA and PGI OpenACC are 2.6x and 3.1x slower on Cori-GPU than Summit!

3 reasons for the slowdown:
• More page faults
• More data movement between CPU and GPU
• Lower bandwidth transfers between CPU and GPU

CCE OpenMP performed poorly because –O0 compilation used for correctness
Managed Memory performance on Cori-GPU: 1 Skylake CPU and 3 Volta GPUs

LLVM Memory manager patch from Shilei Tian improves Clang performance (upstream commit #0289696):

Original:
34,139 calls to cuMemFree (38.4% time)
34,139 calls to cuMemAlloc (35.5% time)

LLVM Memory Manager Patch:
0 calls to cuMemFree (0.0% time)
5 calls to cuMemAlloc (0.0% time)
void smooth(level_type level, ...)
{
#pragma omp target teams distribute map(to:level)
 for (int blk=0; blk < level.num_my_blocks; blk++) {

void smooth(level_type *level, ...)
{
#pragma omp target teams distribute map(to:level[0])
 for (int blk=0; blk < level->num_my_blocks; blk++) {

The Managed Memory version does a shallow copy of “level” to the device for each target region

The explicit data management version creates “level” on the device at program start and then passes a pointer to “level” for each target region

Thanks to Mat Colgrove for the initial OpenACC implementation
The “level” data structure is complicated – ~250 lines of code to create it on the device

```c
typedef struct {
    struct {
        double * ptr;
        // + other variables
    } read, write;
} blockCopy_type;

typedef struct {
    double ** send_buffers;
    double ** recv_buffers;
    blockCopy_type * blocks[3];
    // + other variables
} communicator_type;

typedef struct {
    double ** vectors;
    communicator_type exchange_ghosts[STENCIL_MAX_SHAPES];
    communicator_type restriction[4];
    communicator_type interpolation; // + other variables
} level_type;
```

level_type is a nested data structure containing many pointers and double pointers.

We mapped dynamically allocated data to the GPU, however, a complication is that block pointers (see blockCopy_type “ptr”) may be NULL or may point to communicator_type “send_buffers” or “recvBuffers”
Use “target enter data” to point the block pointers to device data buffers

```c
for (shape=0; shape<STENCIL_MAX_SHAPES; shape++) {
    for (block=0; block<3; ++block) {
        for (b=0; b<level->exchange_ghosts[shape].num_blocks[block]; ++b) {
            #pragma omp target enter data \ 
            map(alloc:level->exchange_ghosts[shape].blocks[block][b].read.ptr[:0])
        }
    }
}
```

Update device pointer using zero length array section
It worked but exposed issues in multiple compilers

- Only LLVM/Clang successfully executed the OpenMP version of the application
 - Runtime errors in XL and CCE compilers
- LLVM/Clang performance was worse than the unoptimized Managed Memory version of the code
 - A profile showed that a huge amount of time was spent in a “target update from” directive used to copy data from GPU to CPU
 - Most of the time was spent in the OpenMP runtime rather than moving data!
We found that LLVM OpenMP runtime overhead was related to the size of the OpenMP present table (https://bugs.llvm.org/show_bug.cgi?id=46107)

- An OpenMP runtime uses a present table to maintain the association between host and device pointers

The present table got large because we updated ~100K HPGMG block pointers using “target enter data”

In the following slides we show 2 ways that we reduced the size of the OpenMP present table to improve performance

- We also show 2 other optimizations to improve performance
Optimization #1: Don’t update device pointer if host pointer is NULL

```c
for (shape=0; shape<STENCIL_MAX_SHAPES; shape++) {
    for (block=0; block<3; ++block) {
        for (b=0; b<level->exchange_ghosts[shape].num_blocks[block]; ++b) {

            if (level->exchange_ghosts[shape].blocks[block][b].read.ptr) {

                #pragma omp target enter data \ 
                map(alloc.level->exchange_ghosts[shape].blocks[block][b].read.ptr[0])

            }

        }
    }
}
```

Add if statement

Summit: 5.9x speedup
Cori-GPU: 6.6x speedup
Optimization #2: Minimize present table size by manually attaching device pointers

```c
for (shape=0; shape<STENCIL_MAX_SHAPES; shape++) {
    for (block=0; block<3; ++block) {
        for (b=0; b<level->exchange_ghosts[shape].num_blocks[block]; ++b) {

            if (level->exchange_ghosts[shape].blocks[block][b].read.ptr) {
                omp_attach((void**)&level->exchange_ghosts[shape].blocks[block][b].read.ptr);
            }

        }
    }
}
```

Create a function `omp_attach` to attach a device pointer in a GPU kernel – does not add an entry to the LLVM OpenMP present table

Summit: 4.1x speedup
Cori-GPU: 5.3x speedup
Optimization #3: Use CUDA-aware MPI

Initial code

```c
#pragma omp target update from(send_buf[:level->exchange_ghosts[shape].send_sizes[n]])
MPI_Isend(send_buf, ...); // send_buf is a host address
```

CUDA-aware MPI code

```c
#pragma omp target data use_device_ptr(send_buf)
{
    MPI_Isend(send_buf, ...); // send_buf is a device address
}
```

Summit: 1.1x speedup
Cori-GPU: 1.3x speedup
Optimization #4: SPMDize kernels

Initial code

```c
#pragma omp target teams distribute
for (int block = 0; block < num_my_blocks; block++) {
    #pragma omp parallel for collapse(3)
    for (int k = klo; k < khi; k++) {
        // ...
    }
}
```

SPMDized code

```c
#pragma omp target teams
#pragma omp parallel
{
    // Manually distribute outer loop over teams using team ID
    for (int block = blockStart; block < blockEnd; block++) {
        #pragma omp for collapse(3)
        for (int k = klo; k < khi; k++) {
            // ...
        }
    }
}
```

Transformed version creates all parallelism upfront to ensure each thread is executing the same code.

Summit: 2.1x speedup
Cori-GPU: 2.2x speedup
Impact of successive optimizations on Summit and Cori-GPU

a). Summit – 57.6x gain
b). Cori-GPU – 97.0x gain

Final version has similar performance on both platforms
Conclusions

- LLVM/Clang, XL and Cray compilers successfully executed the managed memory version of HPGMG
 - The XL compiler achieved 70% of CUDA performance on Summit
- We created an explicit data management version of HPGMG using OpenMP directives – much simpler than using APIs
- Only LLVM/Clang successfully executed the explicit data management version of HPGMG
 - Initial performance was poor (worse than managed memory version)
 - We improved performance significantly by working around overheads in LLVM/Clang: 57.6x on Summit and 97.0x on Cori-GPU
Thanks for listening

Contact: csdaley AT lbl.gov

This research used resources of the National Energy Research Scientific Computing Center (NERSC), a U.S. Department of Energy Office of Science User Facility operated under Contract No. DE-AC02-05CH11231.

This research also used resources of the Oak Ridge Leadership Computing Facility, which is a DOE Office of Science User Facility supported under Contract DE-AC05-00OR22725.
The LLVM OpenMP runtime spends a long time in “target update from” directive

It is not because of data movement!

80% of total runtime spent in a libstdc++ function called by the LLVM OpenMP runtime

(HPCToolkit percentages are a little confusing: total inclusive time in HPGMG is considered to be 14.3%. 11.4% of 14.3% is 80%)
omp_attach implementation

```c
void omp_attach(void **ptr)
{
    void *dptr = *ptr;
    if (dptr) {
        #pragma omp target data use_device_ptr(dptr)
        {
        }
        #pragma omp target is_device_ptr(dptr)
        {
            *ptr = dptr;
        }
    }
}
```

omp_attach is passed the address of host pointer
Get the address of the host pointer target (pointee)
Get the device pointer target corresponding to the host pointer target
Use a GPU kernel to update the device pointer, *ptr, to point to the device pointer target (i.e. the mapped array)
omp_attach implementation (version 2)

```c
void omp_attach(void **hptr_address)
{
    if (*hptr_address)
    {
        void *dptr_address = hptr_address;
        void *dptr_value = *hptr_address;

        #pragma omp target data use_device_ptr(dptr_address, dptr_value)
        {
            // Do a bitwise copy of the pointer address value (&dptr_value) stored on the
            // host to the device pointer address (dptr_address)
            omp_target_memcpy(dptr_address, &dptr_value, sizeof(void*), 0, 0,
                                omp_get_default_device(), omp_get_initial_device());
        }
    }
}
```