
Programming Your GPU with OpenMP

Tom Deakin
University of Bristol

tom.deakin@bristol.ac.uk
This tutorial material includes many contributors, including Simon McIntosh-Smith and Tim Mattson,

Eric Stotzer from Mythic Inc, and Harry Waugh, James Price, Matt Martineau and others from the University of Bristol’s HPC Research Group.

Wei-Chen (Tom) Lin
University of Bristol

All the tutorial materials are available online

https://github.com/uob-hpc/openmp-tutorial

https://github.com/uob-hpc/openmp-tutorial

Welcome to the Programming your GPU
with OpenMP tutorial!

• GPUs are becoming increasingly important as
most Exascale machines will be relying on
them

• Given there are now at least 3 mainstream
GPU vendors, we need a portable way to
program them

• OpenMP offload support for GPUs has been
maturing nicely in recent years, so this is a
good time to learn how to use it

• This will be a hands-on tutorial, with a mix of
pre-recorded short lectures, interspersed with
live exercises

Preliminaries: Part 1

• Disclosures
–The views expressed in this tutorial are those of the people delivering the

tutorial.
–We are not speaking for our employers.
–We are not speaking for the OpenMP ARB

• We take these tutorials VERY seriously:
–Help us improve … tell us how you would make this tutorial better.

Preliminaries: Part 2

• Our plan for the day .. Active Learning!
–We will mix short lectures with short exercises.
–You will use your laptop to connect to a remote system which includes GPUs.

• Please follow these simple rules
–Do the exercises that we assign and then change things around and

experiment.
– Embrace active learning!

–Don’t cheat: Do Not look at the solutions before you
complete an exercise … even if you get really frustrated.

Agenda
Morning

• Introduction
• OpenMP overview
• Live exercise 1
• Device model
• Moving data implicitly
• Loop directive
• Live exercise 2
• Coffee break, 30 mins
• Moving data explicitly
• Profiling offloaded code
• Live exercise 3

Afternoon

• Welcome back and recap
• Controlling data movement
• Live exercise 5
• Optimising GPU
• Live exercise 6
• Coffee break, 30 mins
• BUD – “Big Ugly Directive”
• Performance portability
• OpenMP 5 and ecosystem
• QA, discussion, time to finish

exercises

OpenMP basic definitions: the solution stack

OpenMP Runtime library

OS/system support for shared memory and threading

Sy
st

em
 la

ye
r

Directives,
Compiler

OpenMP library Environment
variablesPr

og
.

La
ye

r

Application

End User

U
se

r l
ay

er

Shared address space (SMP)

H
ar

d
w

ar
e

. . .

When OpenMP was originally launched, the focus was on Symmetric Multiprocessing
…. i.e. lots of threads with “equal cost access” to memory

OpenMP programming model
Fork-Join Parallelism:

uMaster thread spawns a team of threads as needed.

uParallelism added incrementally until performance goals are met,
i.e., the sequential program evolves into a parallel program.

Parallel Regions
Master
Thread
in red

A Nested
Parallel
region

Sequential Parts

The growth of complexity in OpenMP
• OpenMP started out in 1997 as a simple interface for the application programmers more versed in their area

of science than computer science.

• The complexity has grown considerably over the years!

Supports general
multithreading, but
the emphasis was
on parallel loops

Numerical integration: the Pi program

ò 4.0
(1+x2) dx = p

0

1

å F(xi)Dx » p
i = 0

N

Mathematically, we know that:

We can approximate the integral as a
sum of rectangles:

Where each rectangle has width Dx and
height F(xi) at the middle of interval i.

F(
x)

 =
 4

.0
/(1

+x
2)

4.0

2.0

1.0X0.0

Serial Pi program

static long num_steps = 100000;
double step;
int main ()
{ int i; double x, pi, sum = 0.0;

 step = 1.0/(double) num_steps;

 for (i=0; i< num_steps; i++){
 x = (i+0.5)*step;
 sum = sum + 4.0/(1.0+x*x);
 }
 pi = step * sum;
}

See openmp-tutorial/pi.c

Example: Pi in OpenMP with a loop & reduction
#include <omp.h>
static long num_steps = 100000; double step;
void main ()
{ int i; double x, pi, sum = 0.0;
 step = 1.0/(double) num_steps;
 #pragma omp parallel
 {
 double x;
 #pragma omp for reduction(+:sum)
 for (i=0; i< num_steps; i++){
 x = (i+0.5)*step;
 sum = sum + 4.0/(1.0+x*x);
 }
 }
 pi = step * sum;
}

Create a scalar local to each thread to hold
the value of x at the center of each interval

Create a team of threads …
without a parallel construct, you’ll
never have more than one thread

Break up loop iterations
and assign them to

threads … setting up a
reduction into sum.

Note … the loop index is
local to a thread by default.

The growth of complexity in OpenMP
• OpenMP started out in 1997 as a simple interface for the application programmers more versed in their area

of science than computer science.

• The complexity has grown considerably over the years!

Tasks added to
OpenMP ... supports
irregular parallelism

The growth of complexity in OpenMP
• OpenMP started out in 1997 as a simple interface for the application programmers more versed in their area

of science than computer science.

• The complexity has grown considerably over the years!

Tasks added to
OpenMP ... supports
irregular parallelism

Target constructs added
to OpenMP ... supports
host-device model

OpenMP programming model

• Up to OpenMP 3.0:
– Aimed at multi-core CPUs
– All cores can see all the main memory
– So OpenMP has one memory space, available to all parallel threads
– It’s SHARED memory programming!

• OpenMP 4.x changes this.

• Added NUMA controls:
– Available memory doesn’t have uniform performance
– Still shared and available to all CPU cores

• Target device model added:
– Target device has separate memory space
– Enables heterogenous programming

OpenMP basic definitions: the solution stack

OpenMP Runtime library

OS/system support for shared memory and threading

Sy
st

em
 la

ye
r

Directives,
Compiler

OpenMP library Environment
variablesPr

og
.

La
ye

r

Application

End User

U
se

r l
ay

er

CPU cores SIMD units GPU cores

Shared address space (NUMA)

H
ar

d
w

ar
e

Live exercise 1

Log in to Cluster and simple CPU vector add in OpenMP

AWS Parallel Cluster

• Thanks to AWS for supporting this tutorial!

• You have access to a ParallelCluster with some NVIDIA Tesla T4 GPUs
• NVIDIA NVHPC compiler toolchain installed

• Username: trainxy (two-digit number)
• Password: iwomp23

Using our AWS ParallelCluster (1/2)
1) Log in to the head
ssh trainXX@54.86.126.69

2) Change to the directory containing the exercises
cd openmp-tutorial

3) List files
ls

[br-train01@login-01 openmp-tutorial]$ ls

heat.c jac_solv.c Make_def_files mm_utils.c Solutions

submit_jac_solv submit_vadd vadd_heap.c
heat_map.c make.def makefile mm_utils.h pi.c

README.md submit_heat submit_pi vadd.c

…

Job submission scripts

vadd exercise
starting code

Makefile to build
everythingstencil exercise

starting code

ssh trainXX@54.86.126.69
iwomp23

Using our AWS ParallelCluster (2/2)

Load the compilers (NB: you need both!)
spack load gcc@12 nvhpc

Build the exercises
make

Submit a job
sbatch submit_vadd

Check job status
squeue -u $USER

Check output from job
Output file will have the job identifier in name
This will be different each time you run a job
cat vadd-32.out

Job status:
 R = Running
 PD = Pending
 CD = Completed
 CF = Configuring
(job will disappear
shortly after completion)

JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)
32 queue0 vadd ec2-user CF 1:10 1 queue0-dy-queue0-compute-resource-0-4

ssh trainXX@54.86.126.69
iwomp23

Exercise: Simple vector add in OpenMP on CPU
Edit file: vadd.c

• Based on a simple parallel pattern: vector addition
• This adds together two arrays, element by element
• We will build on this over the next few exercises
– Highlights the OpenMP concepts you’re learning

• Check you can log into the Cluster
• Take the serial vector add example we’ve provided, and add OpenMP

worksharing directives to run in parallel on the CPU
– #pragma omp parallel for

ssh trainXX@54.86.126.69
iwomp23

Solution: Simple vector add in OpenMP on CPU
Files: Solutions/vadd_par.c, Solutions/submit_vadd_par
int main()

{

float a[N], b[N], c[N], res[N];

int err=0;

// fill the arrays

#pragma omp parallel for

for (int i=0; i<N; i++){

a[i] = (float)i;

b[i] = 2.0*(float)i;

c[i] = 0.0;
res[i] = i + 2*i;

}

// add two vectors

#pragma omp parallel for

for (int i=0; i<N; i++){
c[i] = a[i] + b[i];

}

// test results

#pragma omp parallel for reduction(+:err)

for(int i=0;i<N;i++){
float val = c[i] - res[i];

val = val*val;

if(val>TOL) err++;
}

printf("vectors added with %d errors\n", err);
return 0;

}

Agenda
Morning

• Introduction
• OpenMP overview
• Live exercise 1
• Device model
• Moving data implicitly
• Loop directive
• Live exercise 2
• Coffee break, 30 mins
• Moving data explicitly
• Profiling offloaded code
• Live exercise 3

Afternoon

• Welcome back and recap
• Controlling data movement
• Live exercise 4
• Optimising GPU
• Live exercise 5
• Coffee break, 30 mins
• BUD – “Big Ugly Directive”
• Performance portability
• OpenMP 5 and ecosystem
• QA, discussion, time to finish

exercises

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

L3 Cache
Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

L1 Cache

L2 Cache

G
PU

 M
em

or
y

L2 Cache

L2 Cache L2 Cache

G
PU

 M
em

or
y

G
PU

 M
em

or
y

G
PU

 M
em

or
y

A Generic GPU (following Hennessey and Patterson)

A multithreaded SIMD
processor

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

L3 Cache
Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

L1 Cache

L2 Cache

G
PU

 M
em

or
y

L2 Cache

L2 Cache L2 Cache

G
PU

 M
em

or
y

G
PU

 M
em

or
y

G
PU

 M
em

or
y

A Generic GPU (following Hennessey and Patterson)

Private Memory (work-item)

Local Memory (work-group)

Global Memory (kernel)

Logical Memory Hierarchy

The OpenMP device programming model
• OpenMP uses a host/device model

– The host is where the initial thread of the
program begins execution
– Zero or more devices are connected to

the host
– Device-memory address space is distinct

from host-memory address space

#include <omp.h>
#include <stdio.h>
int main()
{
 printf(“There are %d devices\n”,
 omp_get_num_devices());
}

Device

……
…

…
……

…
…

……
…

…
……

…

Host

OpenMP with target devices
• The target construct offloads execution to a device.

1. Program begins. Launches initial thread
running on the host device.

2. Implicit parallel region surrounds entire program

3. Initial task begins execution

4. Initial task encounters
the target directive.

5. Initial task generates a
target task which is a
mergable, included task

6. Target task launches
target region on the
device

10. Initial task on host
continues once
execution associated
with the target region
completes

7. A new initial thread runs on the device.

8. Implicit parallel region surrounds device program

9. Initial task executes code in the target region.

#pragma omp target
{….} // a structured block of code

Running code on the GPU:
The target construct and default data movement

Host thread
Generating Task

Initial task

Target task

#pragma omp target
 {

{
 target region, can

use A, B and N
}

Device Initial
thread

Host thread
waits for the

task region to
complete

float A[N], B[N]; A, B and N mapped
to the device

the arrays
A and B

mapped back to
the host

Based on figure 6.4 in Using OpenMP – The Next Step by van der Pas, Stotzer and Terboven, MIT Press, 2017

Scalars and statically allocated
arrays are moved onto the device

by default before execution

Only the statically allocated arrays
are moved back to the host after

the target region completes

46

}

The ‘target data’ environment

• Remember: there are distinct memory spaces on host and device.

• OpenMP uses a combination of implicit and explicit data movement.

• Data may move between the host and the device in well defined places:
– Firstly, at the beginning and end of a target region:

#pragma omp target
{ // Data may move from host to device here

 …

} // and from device to host here

• We’ll discuss the other places later…

Default Data Mapping:
implicit movement with a target region

• Scalar variables:
– Examples:
– int N; double x;

– OpenMP implicitly maps scalar variables as firstprivate
– A new value per work-item is initialized with the original value (in OpenCL nomenclature, the

firstprivate goes in private memory).

– The variable is not copied back to the host at the end of the target region.

– In CUDA/OpenCL parlance, a firstprivate scalar can be launched as a parameter to a kernel
function without the overhead of setting up a variable in device memory.

Default Data Mapping:
implicit movement with a target region

• Non-scalar variables:
– Must have a complete type.

– Example: fixed sized (stack) array:
– double A[1000];

– Copied to the device at the start of the target region, and copied back at the end. In OpenCL
nomenclature, these are placed in device global memory.

– A new memory object is created in the target region and initialized with the original data, but it
is shared between threads on the device. Data is copied back to the host at the end of the
target region.

– OpenMP calls this mapping tofrom

Default Data Mapping:
implicit movement with a target region

• Pointers are implicitly copied, but not the data they point to:

– Example: arrays allocated on the heap
– double *A = malloc(sizeof(double)*1000);

– The pointer value will be mapped (i.e. the address stored in A).

– But the data it points to will not be mapped by default.

– We’ll show you how to map a pointer’s data shortly.

Running code on the GPU:
The target construct and default data movement

Host thread
Generating Task

Initial task

Target task

#pragma omp target
 {

{
 target region, can

use A, B and N
}

Device Initial
thread

Host thread
waits for the

task region to
complete

float A[N], B[N]; A, B and N mapped
to the device

the arrays
A and B

mapped back to
the host

Based on figure 6.4 in Using OpenMP – The Next Step by van der Pas, Stotzer and Terboven, MIT Press, 2017

Scalars and statically allocated
arrays are moved onto the device

by default before execution

Only the statically allocated arrays
are moved back to the host after

the target region completes

51

}

Default Data Sharing: example
int main(void) {
 int N = 1024;
 double A[N], B[N];

 #pragma omp target
 {

 for (int ii = 0; ii < N; ++ii) {

 A[ii] = A[ii] + B[ii];

 }

 } // end of target region
}

1. Variables created in host
memory.

2. Scalar N and stack arrays
A and B are copied to device

memory. Execution
transferred to device.

3. ii is private on the device
as it’s declared within the

target region

4. Execution on the device.

5. stack arrays A and B are
copied from device memory

back to the host. Host
resumes execution.

Commonly used clauses with target

#pragma omp target [clause[[,]clause]...]
structured-block

if(scalar-expression)
– If the scalar-expression evaluates to false then the target region is executed by the

host device in the host data environment.
device(integer-expression)
– The value of the integer-expression selects the device when a device other than

the default device is desired.
private(list) firstprivate(list)
– creates variables with the same name as those in the list on the device. In the

case of firstprivate, the value of the variable on the host is copied into the private
variable created on the device.

map(map-type: list)
– map-type may be to, from, tofrom, or alloc. The clause defines how the variables

in list are moved between the host and the device. (Lots more on this later)...
nowait
– The target task is deferred which means the host can run code in parallel to the

target region on the device.

Let’s run code in parallel on the device
int main(void) {
 int N = 1024;
 double A[N], B[N], C[N];

 #pragma omp target
 #pragma omp loop
 for (int ii = 0; ii < N; ++ii) {

 C[ii] = A[ii] + B[ii];

 }

}

The loop construct tells the compiler:
“this loop will execute correctly if

the loop iterations run in any order.
You can safely run them

concurrently. And the loop-body
doesn’t contain any OpenMP

constructs. So do whatever you
can to make the code run fast”

55

The loop construct is a declarative construct. You
tell the compiler what you want done but you DO
NOT tell it how to “do it”. This is new for OpenMP

Live exercise 2

Vector add on a GPU

Exercise: Parallel vector addition on a GPU
Edit file: vadd.c
• Make a copy of your parallel vadd.c program for a CPU (i.e. save the CPU version)

– vadd.c Adds together two arrays, element by element: for(i=0;i<N;i++) c[i]=a[i]+b[i];
• Parallelize your vadd program for a GPU
• Time it for large N and save the result. How does it compare to the CPU version?

– double omp_get_wtime();
– #pragma omp parallel
– #pragma omp for
– #pragma omp parallel for
– #pragma omp target
– #pragma omp loop

For tiny little programs, OpenMP may opt to run the code on the
host. You can force the OpenMP runtime to use the GPU by
setting the OMP_TARGET_OFFLOAD environment variable

> OMP_TARGET_OFFLOAD=MANDATORY ./a.out

ssh trainXX@54.86.126.69
iwomp23

Solution: Simple vector add in OpenMP on GPU
Files: Solutions/vadd_target.c, Solutions/submit_vadd_target
int main()

{

float a[N], b[N], c[N], res[N];

int err=0;

// fill the arrays

#pragma omp parallel for

for (int i=0; i<N; i++){
a[i] = (float)i;

b[i] = 2.0*(float)i;

c[i] = 0.0;

res[i] = i + 2*i;

}

// add two vectors

#pragma omp target

#pragma omp loop

for (int i=0; i<N; i++){
c[i] = a[i] + b[i];

}

// test results

#pragma omp parallel for reduction(+:err)

for(int i=0;i<N;i++){
float val = c[i] - res[i];

val = val*val;

if(val>TOL) err++;
}

printf("vectors added with %d errors\n", err);
return 0;

}

Agenda
Morning

• Introduction
• OpenMP overview
• Live exercise 1
• Device model
• Moving data implicitly
• Loop directive
• Live exercise 2
• Coffee break, 30 mins
• Moving data explicitly
• Profiling offloaded code
• Live exercise 3

Afternoon

• Welcome back and recap
• Controlling data movement
• Live exercise 4
• Optimising GPU
• Live exercise 5
• Coffee break, 30 mins
• BUD – “Big Ugly Directive”
• Performance portability
• OpenMP 5 and ecosystem
• QA, discussion, time to finish

exercises

Explicit data movement

• Previously, we described the rules for implicit data movement.

• We can explicitly control the movement of data using the map clause.

• Data allocated on the heap needs to be explicitly copied to/from the device:

int main(void) {
 int ii=0, N = 1024;
 int* A = malloc(sizeof(int)*N);

 #pragma omp target
 {
 // N, ii and A all exist here
 // The data that A points to (*A , A[ii]) DOES NOT exist here!
 }
}

Moving data with the map clause

int main(void) {
 int N = 1024;
 int* A = malloc(sizeof(int)*N);

 #pragma omp target map(A[0:N])
 {
 // N, ii and A all exist here
 // The data that A points to DOES exist here!
 }
}

Default mapping
map(tofrom: A[0:N])

Copy at start and end of
target region.

OpenMP array notation

• For mapping data arrays/pointers you must use array section notation:
– In C, notation is pointer[lower-bound : length]

– map(to: a[0:N])
– Starting from the element at a[0], copy N elements to the target data region

– Be careful!
– Common to misremember this as begin : end, but it is length

– Without the map, OpenMP defines that the pointer itself (a) is mapped as a zero-length array
section.
– Zero length arrays: A[:0]

Controlling data movement

• The various forms of the map clause
– map(to:list): On entering the region, variables in the list are initialized on the device using the

original values from the host (host to device copy).
– map(from:list): At the end of the target region, the values from variables in the list are copied

into the original variables on the host (device to host copy). On entering the region, the initial
value of the variables on the device is not initialized.

– map(tofrom:list): the effect of both a map-to and a map-from (host to device copy at start of
region, device to host copy at end).

– map(alloc:list): On entering the region, data is allocated and uninitialized on the device.
– map(list): equivalent to map(tofrom:list).

int i, a[N], b[N], c[N];
#pragma omp target map(to:a,b) map(tofrom:c)

Data movement
defined from the
host perspective.

5-point stencil: the heat program

• The heat equation models changes in temperature over time.

• We’ll solve this numerically on a computer using an explicit finite difference discretisation.
• 𝑢 = 𝑢 𝑡, 𝑥, 𝑦 is a function of space and time.
• Partial differentials are approximated using diamond difference formulae:

𝜕𝑢
𝜕𝑡

≈
𝑢 𝑡 + 1, 𝑥, 𝑦 − 𝑢 𝑡, 𝑥, 𝑦

𝑑𝑡

𝜕!𝑢
𝜕𝑥!

≈
𝑢 𝑡, 𝑥 + 1, 𝑦 − 2𝑢 𝑡, 𝑥, 𝑦 + 𝑢(𝑡, 𝑥 − 1, 𝑦)

𝑑𝑥!

– Forward finite difference in time, central finite difference in space.

𝜕𝑢
𝜕𝑡 − 𝛼∇

!𝑢 = 0

5-point stencil: the heat program

• Given an initial value of 𝑢, and any boundary conditions, we can calculate the value of 𝑢 at time
t+1 given the value at time t.

• Each update requires values from the north, south, east and west neighbours only:

• Computation is essentially a weighted average of each cell and its neighbouring cells.
• If on a boundary, look up a boundary condition instead.

5-point stencil: solve kernel
void solve(…) {

// Finite difference constant multiplier
const double r = alpha * dt / (dx * dx);
const double r2 = 1.0 - 4.0*r;

// Loop over the nxn grid
for (int i = 0; i < n; ++i) {

for (int j = 0; j < n; ++j) {

// Update the 5-point stencil, using boundary conditions on the edges of the domain.
// Boundaries are zero because the MMS solution is zero there.
u_tmp[i+j*n] = r2 * u[i+j*n] +
r * ((i < n-1) ? u[i+1+j*n] : 0.0) +
r * ((i > 0) ? u[i-1+j*n] : 0.0) +
r * ((j < n-1) ? u[i+(j+1)*n] : 0.0) +
r * ((j > 0) ? u[i+(j-1)*n] : 0.0);

}
}

}

Agenda
Morning

• Introduction
• OpenMP overview
• Live exercise 1
• Device model
• Moving data implicitly
• Loop directive
• Live exercise 2
• Coffee break, 30 mins
• Moving data explicitly
• Profiling offloaded code
• Live exercise 3

Afternoon

• Welcome back and recap
• Controlling data movement
• Live exercise 4
• Optimising GPU
• Live exercise 5
• Coffee break, 30 mins
• BUD – “Big Ugly Directive”
• Performance portability
• OpenMP 5 and ecosystem
• QA, discussion, time to finish

exercises

Profiling GPU code

• Host-to-device transfers are important to optimize
– Main memory bandwidth of device is typically high
– P100 has peak of 732 GB/s

– But memory bandwidth between host and device is usually much lower
– PCIe 3.0 x16 has peak of 32 GB/s

• Knowing the code, we can predict that all the data movement between the host
and device takes a lot of time

• Want to use tools to find this out for certain

CUDA Toolkit

Cray maps their OpenMP constructs onto CUDA so NVIDIA’s CUDA toolkit works
with the Cray compilers.

We will demonstrate using an
OpenMP version of flow

Hydrodynamics mini-app solving
Euler’s compressible equations

Explicit 2D method that uses
various stencils, keeping data
resident on GPU for entire solve

CUDA Toolkit: NVProf
Simple profiling: nvprof ./exe <params>

Time to copy data onto GPU
Time to copy data back from GPU

nsys

Nvidia has deprecated their
wonderful command line tool
for profiling GPU programs.

We can still get profiling
information with the nsys tool:

> nsys ./a.out
> nsys nvprof ./a.out

Try nsys in your submit_vadd script

Live exercise 3

Parallelising stencil on a GPU

Exercise: parallel stencil (heat)
Files: heat.c

• Take the provided heat stencil code (heat.c)
• Add OpenMP directives to parallelize the loops on the GPU
• Add OpenMP map clauses to copy data between host and device
• Most of the runtime occurs in the solve() routine
• Directives and clauses:

– #pragma omp target
– #pragma omp target map
– #pragma omp loop
– #pragma omp loop collapse

• Experiment with problem size and the profiler:
– Where is the bottleneck?
– Note, on Isambard, the profile can be run by nsys nvprof --profile-child-processes ./heat

ssh trainXX@54.86.126.69
iwomp23

Exercise: heat code inputs
Files: heat.c

• Takes two optional command line arguments: <ncells> <nsteps>
– E.g. ./heat 1000 10
– 1000x1000 cells, 10 timesteps (the default problem size).

• If no command line arguments are provided, it uses a default:
– These two commands both run the default problem size of 1000x1000 cells, 10 timesteps.
– ./heat
– ./heat 1000 10

• A sensible bigger problem is 8000 x 8000 cells and 10 timesteps.

• Edit submit_heat to change the problem size

• If you try other problems, change the code to report r < 0.5.
– A warning is printed if this is not the case.

ssh trainXX@54.86.126.69
iwomp23

Solution: parallel stencil (heat)
Files: Solutions/heat_target.c, Solutions/submit_heat_target

// Compute the next timestep, given the current timestep

void solve(const int n, const double alpha, const double dx, const double dt, const double * restrict u,
double * restrict u_tmp) {

// Finite difference constant multiplier

const double r = alpha * dt / (dx * dx);

const double r2 = 1.0 - 4.0*r;

// Loop over the nxn grid

#pragma omp target map(tofrom: u[0:n*n], u_tmp[0:n*n])
#pragma omp loop collapse(2)

for (int i = 0; i < n; ++i) {

for (int j = 0; j < n; ++j) {

// Update the 5-point stencil, using boundary conditions on the edges of the domain.

// Boundaries are zero because the MMS solution is zero there.
u_tmp[i+j*n] = r2 * u[i+j*n] +
r * ((i < n-1) ? u[i+1+j*n] : 0.0) +

r * ((i > 0) ? u[i-1+j*n] : 0.0) +
r * ((j < n-1) ? u[i+(j+1)*n] : 0.0) +
r * ((j > 0) ? u[i+(j-1)*n] : 0.0);

}}}

Add the loop directive to the loops
Use collapse clause to increase parallelism

Solution: nsys
$ nsys nvprof ./heat_map_target 8000 10

Problem input

Grid size: 8000 x 8000

Cell width: 1.249844E-01

Grid length: 1000.000000 x 1000.000000

Alpha: 1.000000E-01

Steps: 10

Total time: 5.000000E-01

Time step: 5.000000E-02

Stability

r value: 0.320080

==47637== NVPROF is profiling process 47637, command: ./heat_map_target 8000 10

Results

Error (L2norm): 1.499275E-10

Solve time (s): 4.589534

Total time (s): 9.635819

==47637== Profiling application: ./heat_map_target 8000 10

==47637== Profiling result:

Type Time(%) Time Calls Avg Min Max Name

GPU activities: 53.33% 2.20737s 21 105.11ms 1.4720us 138.77ms [CUDA memcpy HtoD]
44.79% 1.85407s 20 92.704ms 49.633ms 121.67ms [CUDA memcpy DtoH]

1.88% 77.849ms 10 7.7849ms 7.7600ms 7.8050ms __omp_offloading_...

Data movement dominates!
for (int t = 0; t < nsteps; ++t) {

solve(n, alpha, dx, dt, u, u_tmp);

// Pointer swap

tmp = u;

u = u_tmp;

u_tmp = tmp;
}

Typically lots of iterations!

For each iteration, copy to device
(2*N2)*sizeof(TYPE) bytes

solve() routine uses this pragma:
#pragma omp target map(u_tmp[0:n*n], u[0:n*n])

For each iteration, copy from device
(2*N2)*sizeof(TYPE) bytes

Next topic: how to keep data resident on
target device between target regions

Welcome back and recap (5min)

Agenda
Morning

• Introduction
• OpenMP overview
• Live exercise 1
• Device model
• Moving data implicitly
• Loop directive
• Live exercise 2
• Coffee break, 30 mins
• Moving data explicitly
• Profiling offloaded code
• Live exercise 3

Afternoon

• Welcome back and recap
• Controlling data movement
• Live exercise 4
• Optimising GPU
• Live exercise 5
• Coffee break, 30 mins
• BUD – “Big Ugly Directive”
• Performance portability
• OpenMP 5 and ecosystem
• QA, discussion, time to finish

exercises

Finer control over data movement

• Recall that data is mapped to/from device at start/end of target region
– #pragma omp target map(tofrom: A[0:N])

{
…

}

• Inefficient to move data around all the time
• Want to keep data resident on the device between target regions
• Will explain how to interact with the device data environment

Target data directive
• The target data construct creates a target data region

… use map clauses for explicit data management

one or more target
regions work within the

target data region

#pragma omp target data map(to:A[0:N], B[0:M]) map(from: C[0:P])
{

 #pragma omp target
 {do lots of stuff with A, B and C}

 {do something on the host}

 #pragma omp target
 {do lots of stuff with A, B, and C}

}

Data is mapped onto the
device at the beginning of

the construct

Data is mapped back to
the host at the end of the

target data region

Target update details

• #pragma omp target update clause[[[,]clause]...]
• Creates a target task to handle data movement between the host and a device.

• clause is either a motion-clause:
– to(list)
– from(list)

• Or one of the following:
– if(scalar-expression)
– device(integer-expression)
– nowait
– depend (dependence-type : list)

• nowait and depend apply to the target task running on the host.

Target update directive
• You can update data between target regions with

the target update directive.

#pragma omp target data map(to: A[0:N],B[0:M]) map(from: C[0:P])
{
 #pragma omp target
 {do lots of stuff with A, B and C on the device}

 #pragma omp target update from(A[0:N])

 host_do_something_with(A)

 #pragma omp target update to(A[0:N])

 #pragma omp target
 {do lots more stuff with A, B, and C on the device}
}

map A on the
device to A on the
host.

map A on the host
to A on the device.

Set up the data
region ahead of
time.

Note: update directive has the transfer direction as the clause: e.g. update to(…)
Compare to map clause with direction inside: map(to: …)

Target enter/exit data constructs

• The target data construct requires a structured block of code.
– Often inconvenient in real codes.

• Can achieve similar behavior with two standalone directives:
#pragma omp target enter data map(…)
#pragma omp target exit data map(…)

• The target enter data maps variables to the device data environment.
• The target exit data unmaps variables from the device data environment.
• Future target regions inherit the existing data environment.

Target enter/exit data example

void init_array(int *A, int N) {
 for (int i = 0; i < N; ++i)
 A[i] = i;
 #pragma omp target enter data map(to: A[0:N])
}

int main(void) {

 int N = 1024;
 int *A = malloc(sizeof(int) * N);
 init_array(A, N);

 #pragma omp target teams distribute parallel for simd
 for (int i = 0; i < N; ++i)
 A[i] = A[i] * A[i];

 #pragma omp target exit data map(from: A[0:N])
}

Target enter/exit data details

• #pragma omp target enter data clause[[[,]clause]...]
• Creates a target task to handle data movement between the host and a device.

• clause is one of the following:
– if(scalar-expression)
– device(integer-expression)
– nowait
– depend (dependence-type : list)
– map (map-type: list)

• nowait and depend apply to the target task running on the host.

A note about the nowait clause

• Specify dependencies to ensure the target enter data finishes before
the target region sibling task starts:

 void init_array(int *A, int N) {
 for (int i = 0; i < N; ++i) A[i] = i;
 #pragma omp target enter data map(to: A[0:N]) nowait depend(out: A)
 }

 int main(void) {
 int N = 1024; int *A = malloc(sizeof(int) * N);
 init_array(A, N);

 #pragma omp target teams distribute parallel for simd nowait depend(inout: A)
 for (int i = 0; i < N; ++i) A[i] = A[i] * A[i];

 #pragma omp taskwait

 #pragma omp target exit data map(from: A[0:N])
 }

Notes about Pointer swapping

• Mapping between addresses on host and device is done when the target
constructs are encountered

• #pragma omp target data map(from:)
– The from location is fixed from the start of the target data region
– If pointers are swapped, data is still copied back to the original pointer

void *orig = a;
#pragma omp target data map(tofrom: a[0:N])

{
a = NULL; // or anything else

}

• Target exit data map(from:) uses the current mapping
– So if pointers are swapped, it will go to the new address

Data copied back to a’s original location

Data movement summary

• Data transfers between host/device occur at:
– Beginning and end of target region
– Beginning and end of target data region
– At the target enter data construct
– At the target exit data construct
– At the target update construct

• Can use target data and target enter/exit data to reduce redundant transfers.

• Use the target update construct to transfer data on the fly within a target data
region or between target enter/exit data directives.

Live exercise 4

Optimising stencil data movement

Exercise
Files: heat.c

• Modify your parallel heat code from the last exercise.
• Use the ‘target data’ family of constructs to control the device data environment.
• Minimize data movement with map clauses to minimize data movement.

– #pragma omp target
– #pragma omp target enter data
– #pragma omp target exit data
– #pragma omp target update
– map(to:list) map(from:list) map(tofrom:list)
– #pragma omp loop

ssh trainXX@54.86.126.69
iwomp23

Solution: Pointer swapping in action
Files: Solutions/heat_target_map.c, Solutions/submit_heat_target_map

#pragma omp target enter data map(to: u[0:n*n], u_tmp[0:n*n])

for (int t = 0; t < nsteps; ++t) {

solve(n, alpha, dx, dt, u, u_tmp);

// Pointer swap

tmp = u;

u = u_tmp;

u_tmp = tmp;

}

#pragma omp target exit data map(from: u[0:n*n])

Copy data to device
before iteration loop

Update solve() routine to remove map clauses:
#pragma omp target map(u_tmp[0:n*n], u[0:n*n])

Copy data from device
after iteration loop

Pointer-swap on the host works. Why?
The pointers (u and u_tmp) are “on the stack” scalars the value of which is a pointer to

memory. They are copied onto the device at the target construct.
The association between host and device addresses is fixed with the start of a target data

region. Hence, as you swap the pointers, the references to the addresses in device
memory are swapped ….. i.e. pointer-swapping on the host works.

NVPROF output

Results

Error (L2norm): 1.499275E-10
Solve time (s): 0.161998
Total time (s): 6.185598

==26738== Profiling application: ./heat_data_reg 8000 10
==26738== Profiling result:

Type Time(%) Time Calls Avg Min Max Name
GPU activities: 51.67% 161.32ms 10 16.132ms 15.764ms 16.472ms __omp_offloading_...

35.66% 111.33ms 3 37.111ms 896ns 56.239ms [CUDA memcpy HtoD]
12.67% 39.551ms 1 39.551ms 39.551ms 39.551ms [CUDA memcpy DtoH]

Data movement summary

• Data transfers between host/device occur at:
– Beginning and end of target region
– Beginning and end of target data region
– At the target enter data construct
– At the target exit data construct
– At the target update construct

• Can use target data and target enter/exit data to reduce redundant transfers.

• Use the target update construct to transfer data on the fly within a target data
region or between target enter/exit data directives.

Getting the data movement between host memory and
device memory is key.

What are the other major issues to consider when
optimizing performance?

Agenda
Morning

• Introduction
• OpenMP overview
• Live exercise 1
• Device model
• Moving data implicitly
• Loop directive
• Live exercise 2
• Coffee break, 30 mins
• Moving data explicitly
• Profiling offloaded code
• Live exercise 3

Afternoon

• Welcome back and recap
• Controlling data movement
• Live exercise 4
• Optimising GPU
• Live exercise 5
• Coffee break, 30 mins
• BUD – “Big Ugly Directive”
• Performance portability
• OpenMP 5 and ecosystem
• QA, discussion, time to finish

exercises

Occupancy: Keep all the GPU resources busy
• In our “GPU cartoon” we have 16

multithreaded SIMD processors each with
16 SIMD lanes …. For a total of 162=256
processing elements.

• You want all resources busy at all times.
You do that by keeping excess work for
the multithreaded SIMD processors … if
they are other busy on some high latency
operation, you want a new work-group is
ready to be scheduled for execution.

• Occupancy having enough work-groups to
keep the GPU busy. To support high
occupancy, you need many more work-
items than SIMD-lanes.

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

L3 Cache
Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

L1 Cache

L2 Cache

G
PU

 M
em

or
y

L2 Cache

L2 Cache L2 Cache

G
PU

 M
em

or
y

G
PU

 M
em

or
y

G
PU

 M
em

or
y

A multithreaded SIMD
processor

#pragma omp parallel for
for(int i=0;i<N;i++)
 for(int j=0;j<N;j++)
 for(int k=0;i<N;k++)
 *(C+(i*N+j)) += *(A+(i* N +k)) * *(B+(k* N +j));

#pragma omp parallel for collapse(2)
for(int i=0;i<N;i++)
 for(int j=0;j<N;j++)
 for(int k=0;i<N;k++)
 *(C+(i*N+j)) += *(A+(i* N +k)) * *(B+(k* N +j));

Parallelize i-loop
parallelism O(N)

Parallelize combined i/j-loops
parallelism O(N2)

Single Instruction Multiple Data

• Individual work-items of a warp start together at the same program address
• Each work-item has its own instruction address counter and register state

– Each work-item is free to branch and execute independently
– Supports the Single Program Multiple Data (SPMD) pattern.

• Branch behavior
– Each branch will be executed serially
– Work-items not following the current branch will be disabled

A warp

Start If Else Converge

Time

Branching

• GPUs tend not to support speculative execution, which means that branch
instructions have high latency

• This latency can be hidden by switching to alternative work-items/work-groups,
but avoiding branches where possible is still a good idea to improve performance

• When different work-items executing within the same SIMD ALU array take
different paths through conditional control flow, we have divergent branches (vs.
uniform branches)

• Divergent branches are bad news: some work-items will stall while waiting for the
others to complete

• We can use predication, selection and masking to convert conditional control flow
into straight line code, potentially improving the performance of code that has lots
of conditional branches inside the loops

Branching

Conditional execution

// Only evaluate expression
// if condition is met
if (a > b)
{
acc += (a - b*c);

}

Selection and masking

// Always evaluate expression
// and mask result
temp = (a - b*c);
mask = (a > b ? 1.f : 0.f);
acc += (mask * temp);

Coalesced memory accesses

• Coalesced memory accesses are key for high performance code,
especially on GPUs

• In principle, this is very simple, but often requires transposing or
transforming data on the host before sending it to the GPU

• Sometimes this is about Array of Structures vs. Structure of Arrays
(AoS vs. SoA)

Memory layout is critical to performance

• Structure of Arrays vs. Array of Structures
– Array of Structures (AoS) more natural to code:

struct Point{ float x, y, z, a; };
Point *Points;

x x x x … y y y y … z z z z … a a a a …

x y z a … x y z a … x y z a … x y z a …

Adjacent work-
items/vector-lanes like
to access adjacent
memory locations

– Structure of Arrays (SoA) suits memory coalescence in vector units:
struct { float *x, *y, *z, *a; } Points;

Coalescence

• Coalesce - to combine into one
• Coalesced memory accesses are key for high

bandwidth
• Simply, it means, if thread i accesses memory

location n then thread i+1 accesses memory
location n+1

• In practice, it’s not quite as strict…

for (int id = 0; id < size; id++)
{
// ideal

float val1 = memA[id];

// still pretty good
const int c = 3;
float val2 = memA[id + c];

// stride size is not so good
float val3 = memA[c*id];

// terrible
const int loc =
 some_strange_func(id);

float val4 = memA[loc];
}

0 1 2 3 4 5 6 7 GPU Threads

64 Byte Boundary GPU Memory64 Byte Boundary

0x1000x0fc0x0f80x0f4 0x104 0x108 0x10c 0x110 0x114 0x118 0x11c 0x120 0x124 0x128

Memory access patterns

float val1 = memA[id];

0 1 2 3 4 5 6 7

0x1000x0fc0x0f80x0f4 0x104 0x108 0x10c 0x110 0x114 0x118 0x11c 0x120 0x124 0x128

64 Byte Boundary

Memory access patterns

0 1 2 3 4 5 6 7

0x1200x11c0x1180x114 0x124 0x128 0x12c 0x130 0x134 0x138 0x13c 0x140 0x144 0x148

64 Byte Boundary

const int c = 3;
float val2 = memA[id + c];

Memory access patterns

float val3 = memA[3*id];

0 1 2 3 4 5 6 7

64 Byte Boundary Strided access results in multiple
memory transactions (and

kills throughput)

0x1000x0fc0x0f80x0f4 0x104 0x108 0x10c 0x110 0x114 0x118 0x11c 0x120 0x124 0x128

Memory access patterns

const int loc =
 some_strange_func(id);

float val4 = memA[loc];

0 1 2 3 4 5 6 7

64 Byte Boundary

0x1000x0fc0x0f80x0f4 0x104 0x108 0x10c 0x110 0x114 0x118 0x11c 0x120 0x124 0x128

Memory access patterns

Live exercise 5

Optimising stencil compute code

Exercise
Files: heat.c

• Optimize the stencil ‘solve’ kernel.

• Start with your code with optimized memory movement from the last exercise.

• Experiment with the optimizations we’ve discussed.

• Focus on the memory access pattern.

• Try different input sizes to see the effect of the optimizations.

• Keep an eye on the solve time as reported by the application.

ssh trainXX@54.86.126.69
iwomp23

Solution: swap loop order
Files: Solutions/heat_target_map_opt.c, Solutions/submit_heat_target_map_opt

// Compute the next timestep, given the current timestep

void solve(const int n, const double alpha, const double dx, const double dt, const double * restrict u,
double * restrict u_tmp) {

// Finite difference constant multiplier

const double r = alpha * dt / (dx * dx);

const double r2 = 1.0 - 4.0*r;

// Loop over the nxn grid

#pragma omp target
#pragma omp loop collapse(2)

for (int j = 0; j < n; ++j) {

for (int i = 0; i < n; ++i) {

// Update the 5-point stencil, using boundary conditions on the edges of the domain.

// Boundaries are zero because the MMS solution is zero there.
u_tmp[i+j*n] = r2 * u[i+j*n] +
r * ((i < n-1) ? u[i+1+j*n] : 0.0) +

r * ((i > 0) ? u[i-1+j*n] : 0.0) +
r * ((j < n-1) ? u[i+(j+1)*n] : 0.0) +
r * ((j > 0) ? u[i+(j-1)*n] : 0.0);

}}}

Swap the i and j loops so that the i+j*n
memory accesses are contiguous

Agenda
Morning

• Introduction
• OpenMP overview
• Live exercise 1
• Device model
• Moving data implicitly
• Loop directive
• Live exercise 2
• Coffee break, 30 mins
• Moving data explicitly
• Profiling offloaded code
• Live exercise 3

Afternoon

• Welcome back and recap
• Controlling data movement
• Live exercise 4
• Optimising GPU
• Live exercise 5
• Coffee break, 30 mins
• BUD – “Big Ugly Directive”
• Performance portability
• OpenMP 5 and ecosystem
• QA, discussion, time to finish

exercises

The loop construct is great, but sometimes you
want more control.

OpenMP device model: Examples

Some key devices that were
considered when designing

the device model in OpenMP

Target Device: Intel® Xeon Phi™
processor

Host

Target Device: GPU

OpenMP Device Model: another example

Heterogeneous System on Chip (SoC)

A Generic Host/Device Platform Model

• One Host and one or more Devices
– Each Device is composed of one or more Compute Units
– Each Compute Unit is divided into one or more Processing Elements

• Memory is divided into host memory and device memory

Processing
Element

Device

……
…

…
……

…
…

……
…

…
……

…

Host

Compute Unit

Explosion of parallelism

• GPUs are made of many cores (compute units)
– NVIDIA V100 has 80 Streaming Multiprocessors (SMs); these are the compute units
– NVIDIA A100 has 108 compute units
– Each NVIDIA compute unit has 64 FP32 processing elements
– GPUs from AMD and Intel have similar structure of compute units and processing elements

• On an A100, that’s 108 x 64 = 6.912 processing elements available to work in
parallel

• Typically you need to expose multiple units of work per processing element for
best performance

• Massive amount of (hierarchical) parallelism to exploit

Our host/device Platform Model and OpenMP

Processing
Element

Device

……
…

…
……

…
…

……
…

…
……

…

Host

Compute Unit

target
construct to
get onto a

device

teams construct to create a league
of teams with one team of threads

on each compute unit

distribute construct to assign
blocks of loop iterations to teams

parallel for simd
to run each block
of loop iterations

on the processing
elements

Our host/device Platform Model and OpenMP

Processing
Element

Device

……
…

…
……

…
…

……
…

…
……

…

Host

Compute Unit

target
construct to
get onto a

device

teams construct to create a league
of teams with one team of threads

on each compute unit.

distribute construct to assign
blocks of loop iterations to teams

parallel for simd
to run each block
of loop iterations

on the processing
elements

Typical usage ... let the compiler do what’s best for the device:

#pragma omp target

#pragma omp teams distribute parallel for simd
to assign work to the device processing elements

Implementation details

• OpenMP defines parallelism abstraction
– Specific terminology is used

• An OpenMP implementation (runtime/compiler) has some freedom in
how these are applied to hardware
– Allows the implementation to make sensible choices to get the best performance

• OpenMP directives operate along spectrum of descriptive and
prescriptive control

• Will now explain parallelism in the OpenMP abstraction
– Will talk about how they correlate with hardware later…

Parallel threads

• Recall fork-join model and parallel regions on a CPU:
– #pragma omp parallel

• Threads are created on entry to parallel region
• All those threads belong to one team
• Threads in a team can synchronize:

– #pragma omp barrier

#pragma omp target
#pragma omp parallel for
 for (i=0;i<N;i++)
 …

Host thread
Device
initial
thread

Device
thread
team

Transfer control of execution to a SINGLE device thread
Only one team of threads workshares the loop

‘teams’ and ‘distribute’ constructs

• The teams construct
– Similar to the parallel construct
– It starts a league of teams
– Each team in the league starts with one initial thread – i.e. a team of one thread
– Threads in different teams cannot synchronize with each other
– The construct must be “perfectly” nested in a target construct

• The distribute construct
– Similar to the for construct
– Loop iterations are workshared across the initial threads in a league
– No implicit barrier at the end of the construct
– dist_schedule(kind[, chunk_size])
– If specified, scheduling kind must be static
– Chunks are distributed in round-robin fashion in chunks of size chunk_size
– If no chunk size specified, chunks are of (almost) equal size; each team receives at least one chunk

Multiple teams

• teams construct
• distribute construct

• Transfer execution control to MULTIPLE device initial threads
• Workshare loop iterations across the initial threads.

host thread
device initial

threads

teams

#pragma omp target
#pragma omp teams
#pragma omp distribute
 for (i=0;i<N;i++)
 …

Note: number of teams is implementation defined, good for portable
performance. Compilers can choose how they map teams and threads.

Putting it together

• teams distribute
• parallel for simd

• Transfer execution control to MULTIPLE device initial threads (one per team)
– Workshare loop iterations across the initial threads (teams distribute)

• Each initial thread becomes the master thread in a thread team
– Workshare loop iterations across the threads in a team (parallel for simd)

host thread

device thread
teams

#pragma omp target
#pragma omp teams distribute
for (i=0;i<N;i++)
#pragma omp parallel for simd

 for (j=0;j<M;j++)
 …

Composite Constructs

• The distribution patterns can be cumbersome
• OpenMP defines composite constructs for typical code patterns
– distribute simd
– distribute parallel for
– distribute parallel for simd
– ... plus additional combinations for teams and target

• Let the compiler figure out the loop tiling

#pragma omp target teams
{

#pragma omp distribute parallel for simd
for (int i = 0; i < n; i++) {

F(i) = G(i);
}

}

Worksharing example

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0 1 2 3 4 5 6 7

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Distribute iterations across 2 teams

In a team, workshare (parallel
for) iterations across 4 threads

In each thread use
SIMD parallelism

64 iterations assigned to 2 teams;
Each team has 4 threads;
Each thread has 2 SIMD lanes

#pragma omp target teams distribute parallel for simd \
num_teams(2) num_threads(4) simdlen(2)

 for (i=0; i<64; i++)
 …

Commonly used clauses on
teams distribute parallel for simd

• The basic construct* is:
#pragma omp teams distribute parallel for simd [clause[[,]clause]...]
for-loops

• The most commonly used clauses are:
– private(list) firstprivate(list) lastprivate(list) shared(list)
– behave as data environment clauses in the rest of OpenMP, but note values are only created or copied into the

region, not back out “at the end”.

– reduction(reduction-identifier : list)
– behaves as in the rest of OpenMP … but the variable must appear in a map(tofrom) clause on the associated

target construct in order to get the value back out at the end (more on this later)

– collapse(n)
– Combines loops before the distribute directive splits up the iterations between teams

– dist_schedule(kind[, chunk_size])
– only supports kind = static. Otherwise works the same as when applied to a for construct. Note: this applies to the

operation of the distribute directive and controls distribution of loop iterations onto teams (NOT the distribution of
loop iterations inside a team).

*We often refer to this as the Big Ugly Directive, or BUD

There is MUCH more … beyond what have time to cover
• Do as much as you can with a simple loop construct. It’s portable and as

compilers improve over time, it will keep up with compiler driven performance
improvements.

• But sometimes you need more:
– Control over number of teams in a league and the size of the teams
– Explicit scheduling of loop iterations onto the the teams
– Management of data movement across the memory hierarchy: global vs. shared vs. private …
– Calling optimized math libraries (such as cuBLAS)
– Multi-device programming
– Asynchrony

• Ultimately, you may need to master all those advanced features of GPU
programming. But start with loop. Start with how data on the host maps onto the
device (i.e. the GPU). Master that level of GPU programming before worrying
about the complex stuff.

150

Agenda
Morning

• Introduction
• OpenMP overview
• Live exercise 1
• Device model
• Moving data implicitly
• Loop directive
• Live exercise 2
• Coffee break, 30 mins
• Moving data explicitly
• Profiling offloaded code
• Live exercise 3

Afternoon

• Welcome back and recap
• Controlling data movement
• Live exercise 4
• Optimising GPU
• Live exercise 5
• Coffee break, 30 mins
• BUD – “Big Ugly Directive”
• Performance portability
• OpenMP 5 and ecosystem
• QA, discussion, time to finish

exercises

Recall OpenMP device model

Processing
Element

Device

……
…

…
……

…
…

……
…

…
……

…

Host

Compute Unit

Uses OpenCL terminology, but describes a
generic GPU:
• Two levels of parallelism:

• Compute Units
• Processing Elements

• Processing elements in a compute unit
typically operate in lock-step

• But not necessarily, e.g. NVIDIA Volta
architecture

• Performance typically lower when they
don’t

GPU terminology is Broken (sorry about that)

153

SIMT: Single Instruction, Multiple Thread

• SIMT model: Individual scalar instruction streams are grouped together for SIMD
execution on hardware

SL0 SL1 SL2 SL3 SL4 SL5 SL6 SL7

ld x
mul a
ld y
add
st y

A stream of
Scalar
instructions

NVIDIA calls this set of
work-items a warp

ld x

mul a

ld y

add

st y

ld x

mul a

ld y

add

st y

ld x

mul a

ld y

add

st y

ld x

mul a

ld y

add

st y

ld x

mul a

ld y

add

st y

ld x

mul a

ld y

add

st y

ld x

mul a

ld y

add

st y

ld x

mul a

ld y

add

st y

SIMD execution
scheduled across a

fixed number of SIMD
Lanes (SL)

Instruction Cache

SIMD Thread Scheduler

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Instruction Cache

SIMD Thread Scheduler

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Instruction Cache

SIMD Thread Scheduler

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Instruction Cache

SIMD Thread Scheduler

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

cache

G
PU

 M
em

ory

L3$

ALU

L1D$

L2$

L1I$

ALU

L1D$

L2$

L1I$

L1D$

L2$

ALU

L1I$ L1D$

L2$

ALU

L1I$

SIMD LanesSIMD Lanes

SIMD Lanes SIMD Lanes

Program
defines work

For a CPU

For a GPU

Work decomposed
into blocks

Work
decomposed into

work-items

Organized into
work-groups

One work-group per
compute-unit executing

Executing a program on CPUs and GPUs

Instruction Cache

SIMD Thread Scheduler

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Instruction Cache

SIMD Thread Scheduler

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Instruction Cache

SIMD Thread Scheduler

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Instruction Cache

SIMD Thread Scheduler

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

cache

G
PU

 M
em

ory

L3$

ALU

L1D$

L2$

L1I$

ALU

L1D$

L2$

L1I$

L1D$

L2$

ALU

L1I$ L1D$

L2$

ALU

L1I$

SIMD LanesSIMD Lanes

SIMD Lanes SIMD Lanes

Program
defines work

For a CPU

For a GPU

Work decomposed
into blocks

Work
decomposed into

work-items

Organized into
work-groups

Enqueued for
execution

Mapped onto
threads for
execution

One work-group per
compute-unit executing

Executing a program on CPUs and GPUs

CPU/GPU execution model

For a CPU, the
threads are all
active and able

to make forward
progress.

For a GPU, any
given work-group

might be in the
queue waiting to

execute.

How do we execute code on a GPU:
The SIMT model (Single Instruction Multiple Thread)

extern void reduce(__local float*, __global float*);

__kernel void pi(const int niters, float step_size,
 __local float* l_sums, __global float* p_sums)
{
 int n_wrk_items = get_local_size(0);
 int loc_id = get_local_id(0);
 int grp_id = get_group_id(0);
 float x, accum = 0.0f; int i,istart,iend;

 istart = (grp_id * n_wrk_items + loc_id) * niters;
 iend = istart+niters;

 for(i= istart; i<iend; i++){
 x = (i+0.5f)*step_size; accum += 4.0f/(1.0f+x*x); }

 l_sums[local_id] = accum;
 barrier(CLK_LOCAL_MEM_FENCE);
 reduce(l_sums, p_sums);
}

1. Turn source code into a
scalar work-item

2. Map work-items onto an N
dimensional index space 4. Run on hardware

designed around the
same SIMT
execution model

3. Map data structures onto
the same index space

This is OpenCL kernel code … the sort
of code the OpenMP compiler generates

on your behalf

Third Party names are the property of their owners

How do we execute code on a GPU:
OpenCL and CUDA nomenclature

extern void reduce(__local float*, __global float*);

__kernel void pi(const int niters, float step_size,
 __local float* l_sums, __global float* p_sums)
{
 int n_wrk_items = get_local_size(0);
 int loc_id = get_local_id(0);
 int grp_id = get_group_id(0);
 float x, accum = 0.0f; int i,istart,iend;

 istart = (grp_id * n_wrk_items + loc_id) * niters;
 iend = istart+niters;

 for(i= istart; i<iend; i++){
 x = (i+0.5f)*step_size; accum += 4.0f/(1.0f+x*x); }

 l_sums[local_id] = accum;
 barrier(CLK_LOCAL_MEM_FENCE);
 reduce(l_sums, p_sums);
}

Turn source code into a scalar work-
item (a CUDA thread)

Organize work-items into
work-groups and map onto an N

dimensional index space. CUDA calls
a work-group a thread-block

OpenCL index space is
called an NDRange. CUDA

calls this a GridThis code defines a kernel

Submit a kernel
to an OpenCL
command
queue or a
CUDA stream

Third Party names are the property of their owners

It’s called SIMT, but GPUs are really vector-architectures with a block of work-
items executing together (a subgroup in OpenCL or a warp in CUDA)

OpenMP: mapping the parallelism

• OpenMP defines three levels of parallelism:
1. Teams
2. Parallel threads
3. SIMD

• But GPU hardware really has two levels of parallelism:
1. Compute units
2. Processing elements

• Implementations have flexibility in how they associate OpenMP concepts to the underlying hardware

• LLVM-based compilers, including Cray CCE >= 9, usually associate:
– OpenMP teams to compute units
– OpenMP threads to processing elements
– OpenMP SIMD is ignored

• Cray classic compiler maps SIMD to processing elements instead

How is this parallelism applied?

• Consider:
#pragma omp teams distribute

• Loop iterations distributed between teams
• Remember, you can’t synchronize between teams
• So all iterations are independent
• Implementations can, and will, share the work across the whole GPU:

– OpenMP teams being mapped to processing elements
– Doesn’t matter how the work-items are grouped into work-groups (compute

units) as no synchronisation
• Behaves somewhat like SIMD auto-vectorization

What parallelism are you getting?

• With more than one possible mapping, sometimes you need to find out
what is really happening.

• Compiler documentation:
– Cray: man intro_openmp

• Compiler output:
– In CCE 10, -fsave-loopmark flag

• Profiling:
– $ nvprof --print-gpu-trace

– Look for the number of threads per block, and number of blocks
– Combine that with knowledge of pragma and number of loop iterations

CUDA Toolkit: NVProf/nsys
Trace profiling: nvprof --print-gpu-trace ./exe <params>

Entries ordered by time

Shows block sizes, grid
dimensions and register
counts for kernels

Some OpenMP performance portability results

• To test performance we use a mixture of synthetic benchmarks and mini-apps.

• We compare against device-specific code written in OpenMP 3.0 and CUDA.

• We eventually use OpenMP 4.x to run on every diverse architecture that we
believe is currently supported.

• Our initial expectations were low – but initial results we produced in 2016 were
promising.

Third party names are the property of their owners.

Performance?
Immediately we see impressive
performance compared to CUDA

Clearly the Cray compiler leverages
the existing OpenACC backend

Even with OpenMP 4.5 there is still
no way of targeting shared memory
directly.

This is set to come in with OpenMP
5.0, and Clang supports targeting
address spaces directly

CloverLeaf

BUDE

Martineau, M., McIntosh-Smith, S. Gaudin, W., Evaluating OpenMP 4.0’s
Effectiveness as a Heterogeneous Parallel Programming Model, 2016, HIPS’16

Third party names are the property of their owners.

* CCE 8.4.3, ICC 15.0.3, PGI 15.01, CUDA 7.0 on an NVIDIA® K20X, and
Intel® Xeon® Haswell 16 Core Processor (E5-2698 v3 @ 2.30GHz)

Performance?

We found that Cray’s OpenMP
4.0 implementation achieved
great performance on a K20x

We have seen these figures
continually improve as the
languages have matured

TeaLeaf

Martineau, M., McIntosh-Smith, S. Gaudin, W., Assessing
the Performance Portability of Modern Parallel
Programming Models using TeaLeaf, 2016, CC-PE

* CCE 8.4.3, ICC 15.0.3, PGI 15.01, CUDA 7.0 on an NVIDIA® K20X, and
Intel® Xeon® Haswell 16 Core Processor (E5-2698 v3 @ 2.30GHz)

Third party names are the property of their owners.

How do you get good performance?

• Our findings so far: You can achieve good performance on GPUs with OpenMP 4.x.

• We achieved this by:

• Keeping data resident on the device for the greatest possible time.

• Collapsing loops with the collapse clause, so there was a large enough iteration space to saturate
the device (ideally >104 iterations to keep a modern GPU busy).

• Using the BUD: teams distribute parallel for simd

• Using the simd directive to vectorize inner loops.

• Using schedule(static, 1) for coalescence (obsolete).

• Using nvprof of course.

Can you do better?

Through extensive tuning of the compiler implementation we
were able to execute CloverLeaf mini-app within 9% absolute
runtime of hand optimized CUDA code…

* Clang copy https://github.com/clang-ykt,
CUDA 8.0, NVIDIA K40m

Martineau, M., Bertolli, C., McIntosh-Smith, S., et al. Broad Spectrum
Performance Analysis of OpenMP 4.5 on GPUs, 2016, PMBS’16

Third party names are the property of their owners.

Good. Performance… and Portability?

• Up until this point we had implicitly proven a good level of portability as we had successfully run
OpenMP 4.x on many devices (Intel® CPU, Intel Xeon® Phi™ processors, NVIDIA® GPUs).

• The compiler support continually changes, improving performance, correctness and introducing
new architectures.

• We keep tracking this improvement over time.

Third party names are the property of their owners.

OpenMP in The Matrix

Deakin, T., et al., Tracking Performance Portability on the Yellow Brick Road to Exascale,
P3HPC Workshop, 2020. http://p3hpc.org

OpenMP has wide support,
and good performance
across all platforms

Third party names are the property of their owners.

OpenMP
Kokkos

OpenACC
CUDA

OpenCL
SYCL

Cascade Lake
Skylake

Knights Landing
Rome

Power 9
ThunderX2
Graviton 2

A64FX
P100
V100
A100

Turing
Radeon VII

MI50
IrisPro Gen9

72%
83%
91%
74%
66%
80%
84%
79%
75%
88%
75%
87%
49%
71%
79%

58%
70%
64%

118%
71%
79%
82%
58%
76%
92%
86%
90%
78%
69%

X

24%
28%
66%
40%
47%

X
X
X

75%
92%
88%
90%
10%
9%
X

X
X
X
X
X
X
X
X

75%
93%
88%
90%

X
X
X

35%
44%
59%
16%

X
32%

X
X

75%
X

87%
90%
82%
76%
80%

36%
43%
54%
70%
59%
75%
26%
14%
72%
86%
87%
86%
81%

E
80%

BabelStream Triad array size=2**25

20

40

60

80

100

http://p3hpc.org/

Nice - but beware of the caveat.

There is a MAJOR caveat - the directives were not identical.
Martineau, M., McIntosh-Smith, S. Gaudin, W., Pragmatic Performance
Portability with OpenMP 4.x, 2016, IWOMP’16

Third party names are the property of their owners.

The worst case scenario

Four different ways of writing for the same kernel…

The answer:

• If you can, just use #pragma omp loop!

• If you can’t, use most compilers would accept the combined construct:
– #pragma omp target teams distribute parallel for

• This does not generalize to all algorithms unfortunately, but the majority can be
adapted.

• The construct makes a lot of guarantees to the compiler and it is very easy to
reason about for good performance.

Caveats

• Real applications will have algorithms that are structured such that they can’t
immediately use the combined construct.

• The handling of clauses, such as collapse, can be tricky from a performance
portability perspective.

• Don’t be misguided… performance is possible without using the combined
construct, but it likely won’t be consistent across architectures.

If you can - just use loop!

Performance
Portability

• Feature complete implementations will allow you to write performant code, and they will
allow you to write portable code.

• To get both will likely require algorithmic changes, and a careful approach to using
OpenMP 4.5 in your application.

• Avoid setting num_teams(nt) and thread_limit(tl) if you can, this is definitely not going
to be performance portable.

• Use collapse(n) in all situations where you expect the trip count of the outer loop to be
small, but be aware that it can have a negative effect on CPU performance.

• Use the combined construct whenever you can.

If you can - just use loop!

Agenda
Morning

• Introduction
• OpenMP overview
• Live exercise 1
• Device model
• Moving data implicitly
• Loop directive
• Live exercise 2
• Coffee break, 30 mins
• Moving data explicitly
• Profiling offloaded code
• Live exercise 3

Afternoon

• Welcome back and recap
• Controlling data movement
• Live exercise 4
• Optimising GPU
• Live exercise 5
• Coffee break, 30 mins
• BUD – “Big Ugly Directive”
• Performance portability
• OpenMP 5 and ecosystem
• QA, discussion, time to finish

exercises

Compiler Support for OpenMP target

• NVIDIA support much of OpenMP for GPUs in NVHPC

• Intel began support for OpenMP 4.0 targeting their Intel Xeon Phi coprocessors in 2013 (compiler version 15.0).
Compiler version 17.0 and later versions support OpenMP 4.5. Compiler in oneAPI supports offload to Intel GPUs.

• Cray provided the first vendor supported implementation targeting NVIDIA GPUs in late 2015. CCE 9 moved to
LLVM base. The latest version of CCE now supports all of OpenMP 4.5 and some of OpenMP 5.

• AMD AOMP compiler supports offload to AMD GPUs.

• IBM has recently completed a compiler implementation using Clang, that fully supports OpenMP 4.5. This is being
introduced into the Clang main trunk.

• LLVM/Clang supports OpenMP 4.5 offload to NVIDIA GPUs. Used as base for many compilers.

• GCC 6.1 introduced support for OpenMP 4.5. GCC 10 can target Intel Xeon Phi, AMD GCN GPUs and NVIDIA
GPUs.

• PGI compilers don’t currently support OpenMP on GPUs (but they do for CPUs).

Third party names are the property of their owners.

OpenMP compiler information: https://www.openmp.org/resources/openmp-compilers-tools/

https://www.openmp.org/resources/openmp-compilers-tools/

OpenMP 5.x and ecosystem

• OpenMP 5 adds features to make writing performance portable programs simpler.
• Highlighting some applicable to target offload:

– Interop
– Mappers
– Unified Shared Memory (USM) and requires
– Function variants
– Reverse offload
– OMP_TARGET_OFFLOAD
– Reduction result mapping

– Reduction variables now implicitly map(tofrom)

OpenMP 5.0: Pointer attachment

• Map pointer variables and initialize them to point to device memory.
struct {
 char *p;
 int a;
} S;
S.p = malloc(100);

#pragma omp target data map(S)
{
#pragma omp target map(S.p[:100])
{ // attach(S.p) = device_malloc(100);

 …

} // device_free(S.p[:100]), detach(S.p);
}

free(S.p);

Map the structure S

Map 100 elements pointed to by
S.p and update the pointer S.p on
the device to point at the mapped
elements.

OpenMP 5.0: #pragma omp declare mapper
• The declare mapper directive declares a user-defined mapper for a given type.
• A mapper defines a method for mapping complex data structures to a target device.
• A mapper may be used to implement a deep copy of pointer structure elements.

typedef struct myvec {
 size_t len;
 double *data;
} myvec_t;

#pragma omp declare mapper(myvec_t v)\
 use_by_default map(v, v.data[:v.len])
size_t num = 50;
myvec_t *v = alloc_array_of_myvec(num);

#pragma omp target map(v[:50])
{
 do_something_with_v(&v);
}

Declare a mapper that declares how
a structure variable of type myvect_t
is mapped.

Use the mapper for myvec_t to map
an array of type myvec_t

OpenMP 5.0: #pragma omp requires

• Code requires specific features, e.g. shared memory between host and devices.
typedef struct mypoints {
 struct myvec * x;
 struct myvec scratch;
 double useless_data[500000];
} mypoints_t;

#pragma omp requires unified_shared_memory

mypoints_t p = new_mypoints_t();

#pragma omp target
{
 do_something_with_p(&p);
}

This code assumes that the host and
device share memory.

No map clauses. All of p is shared
between the host and device.

OpenMP 5.0: function variants

• Declare a device specific version (variant) of a function.
– The variant is optimized for the device.

double a[N], b[N], c[N];

#pragma omp declare variant(fastFUNC) match(target)
double FUNC(double, double);

#pragma omp target
for (int i=0; i<N; i++)
 a[i] = FUNC(b[i], c[i]);

Declare fastFUNC as a variant for
FUNC when executing in a target
region.

Call fastFUNC here instead of FUNC

OpenMP 5.0: reverse offload

• Execute a region of code back on the host from within a target region.
– A target device may not be able to execute this code.

double a[N], b[N], c[N];

#pragma omp target map(to:b,c) map(from:a)
{

 for (int i=0; i<N; i++)
 a[i] = FUNC(b[i], c[i]);

 #pragma omp target device(ancestor:1)
 printf_array(a);

 …
}

Execute printf_array back on the host

OpenMP 5.0: accelerators miscellaneous

• Implicit declare target directives
– No need to put omp declare target on every function if compiler can determine function is

used on a target device.
• Allow declare target on C++ classes with virtual members.
• defaultmap(implicit-behavior[:variable-category)

– E.g. defaultmap(to:aggregate), defaultmap(alloc:scalar)
• OMP_TARGET_OFFLOAD MANDATORY | DISABLED

– A new environment variable that controls device constructs.
• C/C++ array shaping

– E.g. int *p; #pragma omp map(([10][1024*1024])p[i])
• Many other clarifications…

Agenda
Morning

• Introduction
• OpenMP overview
• Live exercise 1
• Device model
• Moving data implicitly
• Loop directive
• Live exercise 2
• Coffee break, 30 mins
• Moving data explicitly
• Profiling offloaded code
• Live exercise 3

Afternoon

• Welcome back and recap
• Controlling data movement
• Live exercise 4
• Optimising GPU
• Live exercise 5
• Coffee break, 30 mins
• BUD – “Big Ugly Directive”
• Performance portability
• OpenMP 5 and ecosystem
• QA, discussion, time to finish

exercises

To learn more about OpenMP
The OpenMP web site has a great deal of material to help you with OpenMP www.openmp.org
Reading the spec is painful … but each spec has a collection of examples. Study the examples, don’t try to read
the specs.
Since the specs are written ONLY for implementors … programmers need the OpenMP Books to master
OpenMP.

Start here … learn the basics
and build a foundation for the
future

Learn advanced features in
OpenMP including tasking and
GPU programming (up to version
4.5)

Programming your
GPU with
OpenMP

Tom Deakin and Tim Mattson

MIT Press

Learn all the details of GPU
programming with OpenMP (up to
version 5.2)
Coming in November 2023

http://www.openmp.org/

Programming Your GPU with OpenMP

Thank you for joining us!

Tutorial materials are available here: https://github.com/uob-hpc/openmp-tutorial

Tom Deakin
University of Bristol

tom.deakin@bristol.ac.uk

Wei-Chen (Tom) Lin
University of Bristol

https://github.com/uob-hpc/openmp-tutorial

Live Q&A and Discussion

Appendices
• OpenMP and C++

OpenMP and C++

• OpenMP and C++ version compatibility
• Mapping class member variables and functions

OpenMP 4.x C++ support

• The OpenMP API specification refers to ISO/IEC 14882:1998 as
C++98!

• Think programming “C in C++”.

foo(std::vector<double> &x)
{
 #pragma omp target data map(x)
 { … }
}

foo(std::vector<double> &x)
{
 double *pv = &x[0];
 #pragma omp target data map(pv[:x.size()])
 { … }
}

You cannot map STL
containers!

Mapping class member variables and functions

struct typeX { int a; };
class typeY {
 int a;
public:
 int foo() { return a^0x01;}
};
#pragma omp declare target to(typeY::foo)

#pragma omp declare target
struct typeX varX; // ok
#pragma omp end declare target
class typeY varY; // ok

void foo()
{
#pragma omp target map(varY)
{
 varX.a = 100; // ok
 varY.foo(); // ok
}}

The member function typeY::foo() can be
accessed on a target device as long as it
appears in a declare target directive and is
not virtual.

Inspired by OpenMP 4.5 Examples Document

Mapping dynamically allocated class member variables

class Matrix
{
 Matrix(int n) {
 len = n;
 v = new double[len];
 #pragma omp target enter data map(alloc:v[0:len])
 }

 ~Matrix() {
 #pragma omp target exit data map(delete:v[0:len])
 delete[] v;
 }

private:
 double* v;
 int len;
};

Use delete map type since the
corresponding host data is free’d after the
deconstructor.

Inspired by OpenMP 4.5 Examples Document

OpenMP 5.0 C++ support
• OpenMP starts to support modern C++
• The OpenMP API specification refers to ISO/IEC

14882:{2011,2014,2017} as C++11, C++14, and C++17 respectively.

• The use of the following features may result in unspecified behavior.
– Alignment support
– Standard layout types
– Allowing move constructs to throw
– Defining move special member functions
– Concurrency
– Data-dependency ordering: atomics and memory model
– Additions to the standard library
– Thread-local storage
– Dynamic initialization and destruction with concurrency
– C++11 library
– Sized deallocation (C++14)
– What signal handlers can do (C++14)

Our running example: Jacobi solver

• An iterative method to solve a system of linear equations
– Given a matrix A and a vector b find the vector x such that Ax=b

• The basic algorithm:
– Write A as a lower triangular (L), upper triangular (U) and diagonal matrix

 Ax = (L+D+U)x = b
– Carry out multiplications and rearrange

 Dx=b-(L+U)x à x = (b-(L+U)x)/D
– Iteratively compute a new x using the x from the previous iteration

 Xnew = (b-(L+U)xold)/D

• Advantage: we can easily test if the answer is correct by
multiplying our final x by A and comparing to b

• Disadvantage: It takes many iterations and only works for
diagonally dominant matrices

Jacobi Solver

<<< allocate and initialize the matrix A >>>
<<< and vectors x1, x2 and b >>>

while((conv > TOL) && (iters<MAX_ITERS))
 {
 iters++;

for (i=0; i<Ndim; i++){
 xnew[i] = (TYPE) 0.0;

for (j=0; j<Ndim;j++){
 if(i!=j)
 xnew[i]+= A[i*Ndim + j]*xold[j];
 }
 xnew[i] = (b[i]-xnew[i])/A[i*Ndim+i];
 }

 // test convergence
 conv = 0.0;

for (i=0; i<Ndim; i++){
 tmp = xnew[i]-xold[i];
 conv += tmp*tmp;
 }
 conv = sqrt((double)conv);

 // swap pointers for next
 // iteration
 TYPE* tmp = xold;
 xold = xnew;
 xnew = tmp;

} // end while loop

Iteratively update xnew until the value stabilizes (i.e. change less than a preset TOL)

Exercise: Jacobi solver

• Start from the provided jacobi_solver program. Verify that
you can run it serially.

• Parallelize for a CPU using the parallel for construct on the
major loops

• Use the target directive to run on a GPU.
– #pragma omp target
– #pragma omp target map(to:list) map(from:list) map(tofrom:list)

Jacobi Solver (Par Targ, 1/2)
while((conv > TOL) && (iters<MAX_ITERS))
 {
 iters++;

 #pragma omp target map(tofrom:xnew[0:Ndim],xold[0:Ndim]) \
 map(to:A[0:Ndim*Ndim], b[0:Ndim])
for (i=0; i<Ndim; i++){
 xnew[i] = (TYPE) 0.0;

for (j=0; j<Ndim;j++){
 if(i!=j)
 xnew[i]+= A[i*Ndim + j]*xold[j];
 }
 xnew[i] = (b[i]-xnew[i])/A[i*Ndim+i];
 }

Jacobi Solver (Par Targ, 2/2)
//

 // test convergence
 //

 conv = 0.0;
 #pragma omp target map(to:xnew[0:Ndim],xold[0:Ndim]), map(tofrom:conv)
for (i=0; i<Ndim; i++){
 tmp = xnew[i]-xold[i];

 conv += tmp*tmp;
 }
 conv = sqrt((double)conv);

 TYPE* tmp = xold;
 xold = xnew;
 xnew = tmp;

} // end while loop

